首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1490篇
  免费   161篇
  2023年   20篇
  2022年   10篇
  2021年   55篇
  2020年   32篇
  2019年   42篇
  2018年   47篇
  2017年   41篇
  2016年   50篇
  2015年   107篇
  2014年   95篇
  2013年   125篇
  2012年   131篇
  2011年   100篇
  2010年   58篇
  2009年   45篇
  2008年   82篇
  2007年   54篇
  2006年   47篇
  2005年   35篇
  2004年   31篇
  2003年   29篇
  2002年   35篇
  2001年   25篇
  2000年   21篇
  1999年   22篇
  1998年   11篇
  1997年   12篇
  1995年   5篇
  1993年   6篇
  1992年   21篇
  1991年   24篇
  1990年   23篇
  1989年   18篇
  1988年   19篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   7篇
  1983年   14篇
  1982年   8篇
  1981年   14篇
  1980年   10篇
  1979年   15篇
  1978年   16篇
  1975年   8篇
  1974年   5篇
  1973年   10篇
  1972年   9篇
  1970年   4篇
  1968年   4篇
排序方式: 共有1651条查询结果,搜索用时 15 毫秒
101.
Mast cells are the central mediating cells of allergic reactions. Binding of allergen specific IgE to high affinity IgE receptor (Fcepsilon RI) and subsequent binding of allergen by the IgE causes receptor cross-linking and activation. In a study examining the differential gene expression in human cord blood-derived mast cells (CBMCs) mediated by activation of Fcepsilon RI both with IgE and IgE followed by cross-linking with alpha-IgE, the chemokine I-309 was found to be upregulated. I-309 is the ligand for the CCR8 receptor and is responsible for chemoattraction of TH2 type T-cells. Interestingly, I-309 RNA and protein levels were elevated not only in response to IgE/alpha-IgE activation but also by IgE alone. In addition, the I-309 levels were augmented by growth of the CBMCs in the presence of the proinflammatory cytokine IL-4. GM-CSF and MIP-1alpha secretion was also induced by IgE. These results suggest that IgE, through the production and release of cytokines such as I-309, GM-CSF and MIP-1alpha could promote an inflammatory reaction in the absence of antigen stimulation of mast cells.  相似文献   
102.
Human ADAM33: protein maturation and localization   总被引:6,自引:0,他引:6  
ADAM33 (a disintegrin and metalloprotease) was recently found to be a novel asthma susceptibility gene. Domain-specific antibodies were used to study its expression and processing. When the pro-domain and catalytic domain were expressed by a stable-transfected cell line, the pro-domain was removed by cleavage within a putative furin cleavage site. The catalytic domain was active in an alpha(2)-macroglobulin complex formation assay and mutation of the catalytic site glutamic acid (E346A) eliminated activity. In transient transfections using the full-length protein, a pro-form and mature form were detectable and alternate glycosylation was demonstrated at sites within the catalytic domain. ADAM33 was detected on the cell surface, with the majority of protein detected intracellularly. The E346A mutation had no significant effect on protein processing. Endogenous ADAM33 was detected in bronchus tissue, bronchial smooth muscle cells, and MRC-5 fibroblasts, consistent with a role in the pathophysiology of asthma.  相似文献   
103.
104.
105.
Gammadelta T cells remain an enigma. They are capable of generating more unique antigen receptors than alphabeta T cells and B cells combined, yet their repertoire of antigen receptors is dominated by specific subsets that recognize a limited number of antigens. A variety of sometimes conflicting effector functions have been ascribed to them, yet their biological function(s) remains unclear. On the basis of studies of gammadelta T cells in infectious and autoimmune diseases, we argue that gammadelta T cells perform different functions according to their tissue distribution, antigen-receptor structure and local microenvironment; we also discuss how and at what stage of the immune response they become activated.  相似文献   
106.
107.
108.
Zou J  Young S  Zhu F  Gheyas F  Skeans S  Wan Y  Wang L  Ding W  Billah M  McClanahan T  Coffman RL  Egan R  Umland S 《Genome biology》2002,3(5):research0020.1-research002013

Background

Inhalation of Ascaris suum antigen by allergic monkeys causes an immediate bronchoconstriction and delayed allergic reaction, including a pulmonary inflammatory infiltrate. To identify genes involved in this process, the gene-expression pattern of allergic monkey lungs was profiled by microarrays. Monkeys were challenged by inhalation of A. suum antigen or given interleukin-4 (IL-4) treatment; lung tissue was collected at 4, 18 or 24 h after antigen challenge or 24 h after IL-4. Each challenged monkey lung was compared to a pool of normal, unchallenged monkey lungs.

Results

Of the approximately 40,000 cDNAs represented on the microarray, expression levels of 169 changed by more than 2.5-fold in at least one of the pairwise probe comparisons; these cDNAs encoded 149 genes, of which two thirds are known genes. The largest number of regulated genes was observed 4 h after challenge. Confirmation of differential expression in the original tissue was obtained for 95% of a set of these genes using real-time PCR. Cluster analysis revealed at least five groups of genes with unique expression patterns. One cluster contained genes for several chemokine mediators including eotaxin, PARC, MCP-1 and MCP-3. Genes involved in tissue remodeling and antioxidant responses were also identified as regulated by antigen and IL-4 or by antigen only.

Conclusion

This study provides a large-scale profile of gene expression in the primate lung following allergen or IL-4 challenge. It shows that microarrays, with real-time PCR, are a powerful tool for identifying and validating differentially expressed genes in a disease model.  相似文献   
109.
110.
35S-labeled derivatives of the insecticides nodulisporic acid and ivermectin were synthesized and demonstrated to bind with high affinity to a population of receptors in Drosophila head membranes that were previously shown to be associated with a glutamate-gated chloride channel. Nodulisporic acid binding was modeled as binding to a single population of receptors. Ivermectin binding was composed of at least two kinetically distinct receptor populations, only one of which was associated with nodulisporic acid binding. The binding of these two ligands was modulated by glutamate, ivermectin, and antagonists of invertebrate gamma-aminobutyric acid (GABA)ergic receptors. Because solubilized nodulisporic acid and ivermectin receptors comigrated as 230-kDa complexes by gel filtration, antisera specific for both the Drosophila glutamate-gated chloride channel subunit GluCl alpha (DmGluCl alpha) and the GABA-gated chloride channel subunit Rdl (DmRdl) proteins were generated and used to examine the possible coassembly of these two subunits within a single receptor complex. DmGluCl alpha antibodies immunoprecipitated all of the ivermectin and nodulisporic acid receptors solubilized by detergent from Drosophila head membranes. DmRdl antibodies also immunoprecipitated all solubilized nodulisporic receptors, but only approximately 70% of the ivermectin receptors. These data suggest that both DmGluCl alpha and DmRdl are components of nodulisporic acid and ivermectin receptors, and that there also exists a distinct class of ivermectin receptors that contains the DmGluCl alpha subunit but not the DmRdl subunit. This co-association of DmGluCl alpha and DmRdl represents the first biochemical and immunological evidence of coassembly of subunits from two different subclasses of ligand-gated ion channel subunits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号